RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

FIRST YEAR [2017-20] B.A./B.Sc. FIRST SEMESTER (July – December) 2017 Mid-Semester Examination, September 2017

: 12/09/2017 Date Time : 11 am – 1 pm

CHEMISTRY (Honours)

Paper : I

Full Marks : 50

[8 marks]

[3]

[5]

[2]

[2]

[2]

[2]

[2]

[Use a separate Answer Book for each group]

Group – A

[Attempt one question from each Unit]

Unit - I

- Draw the structure of (2S, 3R)-3-bromo-2-butanol in Fisher projection formula. Designate it as 1. a) Threo/Erythro nomenclature. Draw one staggered conformation of it in Newman projection.
 - b) Assign R/S configurational descriptor at the chiral centre of the following compounds. Indicate the priority sequence order.

2. a) Indicate the symmetry elements present in the following compounds.

i)
$$Me_{Me}$$
 ii) CHCl₃ [2]

- b) Justify or criticise: If a molecule has a centre of symmetry, it must also possess S_2 axis.
- Indicate the relationship between the following pair of molecules : (Enantiomer or c) diastereomer) [2] Me

Distinguish : Configuration and conformation. d)

Т

- 3. a) Indicate total number of possible molecular orbital for C₂H₄. [1]
 - b) Compare the dipole moment for the following compounds. $CH_{3}CH_{2}CHO(\mu_{1}), CH_{3}-CH=CH-CHO(\mu_{2}), CH_{3}-CH_{2}-CH=CH_{2}(\mu_{3}).$
 - c) Dipole moment of acetone is more than formaldehyde Explain. [1]
 - d) Draw the Pi molecular orbital for allyl cation.
 - Compare the bond dissociation energy for C–Br bond for the following two compounds. e)

$$\mathbb{N}_{Br}$$

(1)

- 4. a) Indicate total number of possible molecular orbital for C_2H_2 .
 - b) Compare dipolemoment for p-Nitroaniline and aniline.
 - c) Write down the most stable cannonical form for :

d)
$$\bigvee_{CH_3}^{G} OMe$$

 CH_3 $\bigvee_{CH_3}^{CH_3} N$ can form stable complex with BMe₃ where as $\bigvee_{CN}^{N} N$ can't form any complex

with BMe₃—Explain.

e) Explain the following observation though both reactions are going through carbocation intermediate.

<u>Group – B</u> [Attempt <u>one question from each Unit</u>]

<u>Unit – III</u>

[8 marks]

5.	a)	N number of gas molecules, in a container of V vol. at T temp. gives pressure, P on striking on the walls of the container. If the molecules move in two directions only, then find out the expression for the pressure, P, exerted by the gas molecules.	[4]
	b)	Define the Maxwell's speed distribution equation for 3 dimensions, explaining the terms.	[2]
	c)	Find the probability that c for N ₂ molecule in a system at 273.15K is in the range $650 \text{ ms}^{-1} \le c \le 651 \text{ ms}^{-1}$.	[2]
6.	a)	At which temperature, the average velocity of H_2 will match with the most probable speed of He gas at 400K?	[2]
	b)	The experimental data for C_v of O_2 does not match with the theoretically predicted value. Explain	[3]
	c)	Show that the fraction of molecules within speed range c and c+ dc are having energy within ϵ and $\epsilon+d\epsilon$.	[3]
		<u>Unit – IV</u> [8	marks]
7.	a)	A gas is made to undergo the following isothermal changes in state—	
		 i) (P_i, V_i) to (P_f, V_f) in infinite number of steps ii) (P_f, V_f) to (P_i, V_i) in infinite number of steps 	
		What is the amount of net work done? Show graphically the amount of work done in both cases (i) and (ii).	[3]
	b)	Derive the equation for the work done in an isothermal, reversible expansion of one mole of a gas obeying the van der Waals' equation of state.	ı [3]
	c)	One mole of an ideal gas with $C_v = 2.5 R$ is expanded adiabatically until the temperature drops	5
		from 293 K to 283 K. Calculate Q, W, ΔU , ΔH .	[2]
8.	a)	A cyclic process involving 1 mole of an ideal monatomic gas has $W = 100$ J/cycle. Q (per cycle) is then (choose from the followings with proper argument) i) zero (ii) 100J (iii) -100J (iv) can not tell since the process is not stated to be reversible.	[2]

(2)

[1]

[1]

[2]

[2]

[2]

- b) Prove that $C_P C_V = nR$ for an ideal gas. Comment whether this value for a gas would be lower or higher than this for a gas that obeys the equation P(V-b) = RT. [3+1]
- c) 'Closed, adiabatic boundaries isolate a system from its surrounding.' Justify or criticize.

<u>Group – C</u> [Attempt <u>one question f</u>rom <u>each Unit]</u>

<u>Unit – V</u>

[9 marks]

[2]

- 9. a) What are the assumptions which Bohr model of hydrogen atom is based on? Cite two instances where the model turned out to be inadequate to provide proper explanation. [2+1]
 b) Calculate the shortest and longest wavelength lines in Paschen series in the hydrogen atomic spectra. (For Paschen series, n₁ = 3, n₂ = n₁ + 1, n₁ + 2, n₁ + 3...; R_H = 109677 cm⁻¹) [3]
 - c) Radial probability distribution function, P(r) for 1s orbital is expressed as $P(r) = 4\pi r^2 R(r)^2$

where, $R(r) = \frac{2}{a_0^{3/2}}e^{-\frac{r}{a_0}}$. Show that the most probable distance of electron from the nucleus

is a_0 .

[3]

[1]

[3]

[2]

- 10. a) What is the significance of a negative sign in the expression of energy of an electron in a hydrogen like atom or ion?
 - b) State what physical property is associated with each of the following quantum numbers and give the value of the property in terms of the quantum number. (i) n, (ii) ℓ (iii) m_{ℓ} , where the terms n, ℓ and m_{ℓ} have their usual significance.
 - c) What is the ratio of the radii of the first three Bohr orbits for hydrogen?
 - d) How many radial nodes are present in the following radial distribution functions. Specifying their locations would be unnecessary. [3]

$$\psi_1 = N_1 \frac{r^2}{a_0^2} e^{-\frac{r}{3a_0}}, \ \psi_2 = N_2 \frac{r}{a_0} \left(2 - \frac{r}{3a_0} \right) e^{-\frac{r}{3a_0}}, \ \psi_3 = N_3 \frac{r}{a_0} \left(3 - 2r - \frac{2r^2}{9a_0^2} \right) e^{-\frac{r}{3a_0}}.$$

 N_1 , N_2 and N_3 are constants.

11.	a)	Define Allred and Rochow's electronegativity scale. What are the advantages and disadvantages of Allred and Rochow method of electronegativity? [2+1.5	+1.5]
	b)	The univalent radius of Ca^{2+} is 117 pm; that for S^{2-} is 219 pm. Calculate the effective crystal radii of the ions, and comment on— 'the interionic distance in CaS is 284 pm'.	[3]
	c)	'Electron affinity of noble gases are zero', comment.	[1]
12.	a)	Arrange the following ions in increasing order of their ionic radii; Give reasons. $Cl^-, Br^-, I^-, F^-, H^-$.	[2]
	b)	It is very difficult task to separate Zr and Hf from their mixture. Explain.	[2]
	c)	Calculate the electronegativity of chlorine in both Pauling and Mulliken's scale. Given, EA (Cl) = 4.0 ev/atom ; IE(Cl) = 13.0 ev/atm .	[2]
	d)	What is the relation between pauling electronegativity with the Allred-Rochow electronegativity co-efficient?	[2]
	e)	Mention the limitations of Slater's rule.	[1]

X